3,501 research outputs found

    Evidence for Factorization in Three-body B --> D(*) K- K0 Decays

    Full text link
    Motivated by recent experimental results, we use a factorization approach to study the three-body B --> D(*) K- K0 decay modes. Two mechanisms are proposed for kaon pair production: current-produced (from vacuum) and transition (from B meson). The Bbar0 --> D(*)+ K- K0 decay is governed solely by the current-produced mechanism. As the kaon pair can be produced only by the vector current, the matrix element can be extracted from e+ e- --> K Kbar processes via isospin relations. The decay rates obtained this way are in good agreement with experiment. Both current-produced and transition processes contribute to B- --> D(*)0 K- K0 decays. By using QCD counting rules and the measured B- --> D(*)0 K- K0 decay rates, the measured decay spectra can be understood.Comment: 17 pages, 6 figure

    Further investigation on chaos of real digital filters

    Get PDF
    This Letter displays, via the numerical simulation of a real digital filter, that a finite-state machine may behave in a near-chaotic way even when its corresponding infinite-state machine does not exhibit chaotic behavior

    Minimizing Human Labelling Effort for Annotating Named Entities in Historical Newspaper

    Get PDF
    To accelerate the annotation of named entities (NEs) in historical newspapers like Sarawak Gazette, only two choices are possible: an automatic approach or a semi-automatic approach. This paper presents a fully automatic annotation of NEs occurring in Sarawak Gazette. At the initial stage, a subset of the historical newspapers is fed to an established rule-based named entity recognizer (NER), that is ANNIE. Then, the preannotated corpus is used as training and testing data for three supervised learning NER, which are based on Naïve Bayes, J48 decision trees, and SVM-SMO methods. These methods are not always accurate and it appears that SVM-SMO and J48 have better performance than Naïve Bayes. Thus, a thorough study on the errors done by SVM-SMO and J48 yield to the creation of ad hoc rules to correct the errors automatically. The proposed approach is promising even though it still needs more experiments to refine the rules

    Minimal Work Principle and its Limits for Classical Systems

    Full text link
    The minimal work principle asserts that work done on a thermally isolated equilibrium system, is minimal for the slowest (adiabatic) realization of a given process. This principle, one of the formulations of the second law, is operationally well-defined for any finite (few particle) Hamiltonian system. Within classical Hamiltonian mechanics, we show that the principle is valid for a system of which the observable of work is an ergodic function. For non-ergodic systems the principle may or may not hold, depending on additional conditions. Examples displaying the limits of the principle are presented and their direct experimental realizations are discussed.Comment: 4 + epsilon pages, 1 figure, revte

    Bifurcations, Chaos, Controlling and Synchronization of Certain Nonlinear Oscillators

    Get PDF
    In this set of lectures, we review briefly some of the recent developments in the study of the chaotic dynamics of nonlinear oscillators, particularly of damped and driven type. By taking a representative set of examples such as the Duffing, Bonhoeffer-van der Pol and MLC circuit oscillators, we briefly explain the various bifurcations and chaos phenomena associated with these systems. We use numerical and analytical as well as analogue simulation methods to study these systems. Then we point out how controlling of chaotic motions can be effected by algorithmic procedures requiring minimal perturbations. Finally we briefly discuss how synchronization of identically evolving chaotic systems can be achieved and how they can be used in secure communications.Comment: 31 pages (24 figures) LaTeX. To appear Springer Lecture Notes in Physics Please Lakshmanan for figures (e-mail: [email protected]

    Visualizing landscapes of the superconducting gap in heterogeneous superconductor thin films: geometric influences on proximity effects

    Full text link
    The proximity effect is a central feature of superconducting junctions as it underlies many important applications in devices and can be exploited in the design of new systems with novel quantum functionality. Recently, exotic proximity effects have been observed in various systems, such as superconductor-metallic nanowires and graphene-superconductor structures. However, it is still not clear how superconducting order propagates spatially in a heterogeneous superconductor system. Here we report intriguing influences of junction geometry on the proximity effect for a 2D heterogeneous superconductor system comprised of 2D superconducting islands on top of a surface metal. Depending on the local geometry, the superconducting gap induced in the surface metal region can either be confined to the boundary of the superconductor, in which the gap decays within a short distance (~ 15 nm), or can be observed nearly uniformly over a distance of many coherence lengths due to non-local proximity effects.Comment: 17 pages, 4 figure

    Light-Front Approach for Heavy Pentaquark Transitions

    Full text link
    Assuming the two diquark structure for the pentaquark state as advocated in the Jaffe-Wilczek model, there exist exotic parity-even anti-sextet and parity-odd triplet heavy pentaquark baryons. The theoretical estimate of charmed and bottom pentaquark masses is quite controversial and it is not clear whether the ground-state heavy pentaquark lies above or below the strong-decay threshold. We study the weak transitions of heavy pentaquark states using the light-front quark model. In the heavy quark limit, heavy-to-heavy pentaquark transition form factors can be expressed in terms of three Isgur-Wise functions: two of them are found to be normalized to unity at zero recoil, while the third one is equal to 1/2 at the maximum momentum transfer, in accordance with the prediction of the large-Nc approach or the quark model. Therefore, the light-front model calculations are consistent with the requirement of heavy quark symmetry. Numerical results for form factors and Isgur-Wise functions are presented. Decay rates of the weak decays Theta_b+ to Theta_c0 pi+ (rho+), Theta_c0 to Theta+ pi- (rho-), Sigma'_{5b}+ to Sigma'_{5c}0 pi+ (rho+) and Sigma'_{5c}0 to N_8+ pi- (rho-) with Theta_Q, Sigma'_{5Q} and N_8 being the heavy anti-sextet, heavy triplet and light octet pentaquarks, respectively, are obtained. For weakly decaying Theta_b+ and Theta_c0, the branching ratios of Theta_b+ to Theta_c0 pi+, Theta_c0 to Theta+ pi- are estimated to be at the level of 10^{-3} and a few percents, respectively.Comment: 33 pages, 3 figures, version to be published in Phys. Rev.

    Fecopneumothorax and colopleural fistula – uncommon complications of Crohn's disease

    Get PDF
    BACKGROUND: Colopleural fistula and fecopneumothorax are very rare complications of Crohn's disease. Fistula formation is frequent in Crohn's disease and occurs in approximately 33% of patients. On the other hand, fistulous communication between the pleural cavity and adjacent organs below the diaphragm is extremely rare. CASE PRESENTATION: We describe the case of 27 year-old female with colopleural fistula as a complication of Crohn's disease. The diagnosis was established with clinical exam, barium enema, chest X-ray, abdominal and chest CT exam. The treatment was surgical. CONCLUSION: Colopleural fistula and fecopneumothorax are rare but life treating complications of Crohn's disease. Surgical treatment is mandatory as soon as the diagnosis is established
    corecore